Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

نویسندگان

  • E V Karaushu
  • I V Lazebnaya
  • T R Kravzova
  • N A Vorobey
  • O E Lazebny
  • D A Kiriziy
  • O P Olkhovich
  • N Yu Taran
  • S Ya Kots
  • A A Popova
  • E Omarova
  • O A Koksharova
چکیده

Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis.

Two nitrogen-fixing root nodule symbioses between soil bacteria and higher plants have been described: the symbiosis between legume and rhizobia and actinorhizal symbioses between plants belonging to eight angiosperm families and the actinomycete Frankia. We have recently shown that the subtilisin-like Ser protease gene cg12 (isolated from the actinorhizal plant Casuarina glauca) is specificall...

متن کامل

The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021.

Medicago truncatula (barrel medic) A17 is currently being sequenced as a model legume, complementing the sequenced root nodule bacterial strain Sinorhizobium meliloti 1021 (Sm1021). In this study, the effectiveness of the Sm1021-M. truncatula symbiosis at fixing N(2) was evaluated. N(2) fixation effectiveness was examined with eight Medicago species and three accessions of M. truncatula with Sm...

متن کامل

Bacterial surface polysaccharides and their role in the rhizobia-legume association

The establishment of a nitrogen-fixing symbiosis is an economically important plant phenomenon. Biological reduction of dinitrogen to ammonia is among the most effective fixation systems facilitating the plant growth in nitrogen starved soils without the requirement of massive inputs of fertilizers. This process occurs in legumes roots in structures called nodules. Nodule development is induced...

متن کامل

Partner choice in Medicago truncatula-Sinorhizobium symbiosis.

In nitrogen-fixing symbiosis, plant sanctions against ineffective bacteria have been demonstrated in previous studies performed on soybean and yellow bush lupin, both developing determinate nodules with Bradyrhizobium sp. strains. In this study, we focused on the widely studied symbiotic association Medicago truncatula-Sinorhizobium meliloti, which forms indeterminate nodules. Using two strains...

متن کامل

Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.

The soil bacterium Sinorhizobium meliloti is capable of entering into a nitrogen-fixing symbiosis with Medicago sativa (alfalfa). Particular low-molecular-weight forms of certain polysaccharides produced by S. meliloti are crucial for establishing this symbiosis. Alfalfa nodule invasion by S. meliloti can be mediated by any one of three symbiotically important polysaccharides: succinoglycan, EP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015